If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-33=0
a = 3; b = 5; c = -33;
Δ = b2-4ac
Δ = 52-4·3·(-33)
Δ = 421
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{421}}{2*3}=\frac{-5-\sqrt{421}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{421}}{2*3}=\frac{-5+\sqrt{421}}{6} $
| -8(x-7)+10=130 | | -9/10f-20=-19 | | X+7=(3x-11) | | -3=y-18 | | -18=q/5+-23 | | (f=0.36+32) | | 4x/(x+7)=2 | | n+12+114=180 | | 3k+4.8=20k-1/5 | | (4+4i)-(6+5i)=0 | | 6–5x=3x‐ | | 16=-3/10t+10 | | F(-3)=6x²-12 | | 9/15=21/x | | z9+4=−78 | | y=–8 | | 8g=14g+22=37 | | n−32=2 | | -3x2+9x=0 | | 3/1=27/x | | 4r–7–r=19 | | (x(x-1)/7+(23-x)/5=7-(4+x)/4 | | 8x+14=4x-2 | | 1/8(-39k+65)+52=13(-5.375k+6.625) | | 7w-7=-25 | | X^3+5x^2=-8x-40 | | 3x²+5x-33=0 | | 0x+5=2x+7 | | 17=3(p─5)+8 | | 2l•3=l+14 | | 5c+3c(c+4)=36 | | 3+5(x)=-31 |